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AFIT-ENP-MS-17-J-014

Abstract

Airborne hyperspectral imaging (HSI) has shown utility in material detection and

identification. Recent interest in longwave infrared (LWIR) HSI systems operating

in the 7-14 micron range has developed due to strong spectral features of minerals,

chemicals, and gaseous effluents. LWIR HSI has the advantage over other spectral

bands by operating in day or night scenarios because emitted/reflected thermal radi-

ation rather than reflected sunlight is measured. This research seeks to determine the

most effective methods to perform model-based atmospheric compensation of LWIR

HSI data by comparing results obtained from different atmospheric profiles. The

standard model for mid-latitude summer (MLS) and radiosonde data are compared

to the National Operational Model Archive and Distribution System (NOMADS)

numerical weather predictions and the Extreme and Percentile Environmental Ref-

erence Tables (ExPERT). The two latter atmospheric profiles are generated using

the Laser Environmental Effects Definition and Reference (LEEDR) software. MLS

has been a standard starting point for model-based atmospheric compensation codes,

but this study tests the effectiveness of starting with a more accurate model of the

atmosphere. The results suggest improvements can be obtained using NOMADS and

ExPERT when compared to MLS and radiosonde approaches.
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IMPROVED ATMOSPHERIC CHARACTERIZATION FOR HYPERSPECTRAL

EXPLOITATION

I. Introduction

Two common forms of remote sensing are imaging and spectrometry. Imaging

focuses electro-optical signals from a scene onto a focal plane array to collect inten-

sity information related to spatial coordinates in the scene, while spectrometry uses

dispersive optics to separate signals into their wavelength components to determine

the intensity at each wavelength. These two sensing techniques are combined to form

hyperspectral remote sensing. A traditional dispersive hyperspectral imager focuses

a scene onto a slit, which is then dispersed into wavelength components and focused

onto a focal plane array. The data collected during one measurement contains a spa-

tial dimension along the slit and a spectral dimension along the dispersion direction.

The slit is then scanned across the scene to build a second spatial dimension. The

resulting data cube contains a spatial image of the scene at generally 100-200 different

wavelengths [13].

Hyperspectral imagers (HSI) are often used on airborne platforms and have shown

utility in material detection and identification. Recent interest in longwave infrared

(LWIR) HSI systems operating in the 7-14 micron range has developed due to strong

spectral features of minerals, chemicals, and gaseous effluents. LWIR HSI has the

advantage over other spectral bands by operating in day or night scenarios because

LWIR sensors measure emitted and reflected thermal radiation rather than reflected

sunlight.

The goal of LWIR HSI is to remotely extract an object’s emissivity, or transmission
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and absorption for gasses, for target identification or detection. This process is done

in two steps: atmospheric compensation, and temperature and emissivity separation.

Atmospheric compensation can be performed using in-scene methods such as quick

atmospheric compensation (QUAC) [9], in-scene atmospheric compensation (ISAC)

[29], autonomous atmospheric compensation (AAC) [19], empirical line method (ELM)

[13], adaptive empirical line method (AELM) [5], and emissive empirical line method

(EELM) [12]. These methods use some a priori knowledge of the scene to calculate

linear offset and scaling spectra that represent the effect of the atmosphere for each

pixel. There are also model-based atmospheric compensation solutions such as fast

line-of-sight atmospheric analysis of spectra hypercubes (FLAASH) [22], its infrared

counterpart FLAASH-IR [4], and Oblique Projection Retrieval of the Atmosphere

(OPRA) [26] that use radiative transfer models to estimate path transmission, up-

welling radiance, and downwelling radiance. These are then passed into a temperature

and emissivity separation algorithm to extract an estimate of the targets emissivity

[10], [11].

For many applications, an integrated downwelling sky radiance is sufficient to rep-

resent downwelling radiance, and gives accurate emissivity results. For low emissivity

non-lambertian targets, directional downwelling radiance data may be required to get

accurate results. A target of this type may reflect cold portions of the sky in nadir

viewing geometries or warm portions of the sky and background in non-nadir or tilted

object configurations [28]. These downwelling radiances are not represented well by

integrated sky radiance. Using an integrated sky in these scenarios can result in un-

physical temperature retrieval and spectral artifacts in the emissivity approximations.

A more complete hemispherical model of the sky downwelling radiance is necessary

to retrieve accurate emissivity for a broader class of materials and imaging scenarios.

One of the most commonly used radiative transfer tools in the HSI community is the

9
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moderate spectral resolution transmittance code, or MODTRAN [28].

MODTRAN is a set of radiative transfer codes that have been continuously devel-

oped and updated by Spectral Sciences, Inc. and the Air Force Research Laboratory

for over 25 years. MODTRAN breaks the atmosphere into horizontal layers to do line

of sight path transmission and path radiance calculations with a user-selectable ra-

diative transfer algorithm. These calculations can be done over spectral ranges from

the ultraviolet to the LWIR [7]. MODTRAN offers pre-made standard atmospheric

profiles and allows the user to vary the parameters of these models in order to better

represent the atmosphere in a specific scenario. Users can also input radiosonde or

climatology data for a more accurate atmospheric model [6].

MODTRAN and other radiative transfer models are used in model-based atmo-

spheric compensation algorithms to correct LWIR HSI data. MODTRAN allows the

user to define the atmosphere at the time of collection and uses that atmospheric pro-

file to model the downwelling radiance, upwelling radiance, and path transmission.

Radiative transfer modeling tools excel in situations where ground truth information

about in-scene material emissivity is difficult or impossible to collect [13].

The Laser Environmental Effects Definition and Reference (LEEDR) code is a

verified and validated, fast-calculating, first principles atmospheric characterization

and radiative transfer package developed at the Air Force Institute of Technology

(AFIT). It enables the creation of vertical profiles of temperature, pressure, water

vapor content, optical turbulence, and atmospheric particulates as they relate to line-

by-line layer extinction coefficient magnitude at any wavelength from the ultraviolet

to radio frequencies. In addition to its broad spectrum of consideration, LEEDR

uniquely allows for a temporally and spatially varying atmospheric boundary layer

(approximately the lowest 1500 m of the atmosphere) through the use of its corre-

lated, probabilistic databases in the production of its vertical profiles of data. This
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allows LEEDR to produce profiles of meteorological data and effects that could actu-

ally occur or have actually occurred at a particular location and time, and attach the

statistical likelihood of such occurrence for that time and place. This differs signifi-

cantly from using standard atmospheric profiles (e.g. the U.S. Standard Atmosphere,

1976) in engineering analyses or simulations [16]. Additionally, a National Oceanic

and Atmospheric Administration (NOAA) Operational Model Archive Distribution

System (NOMADS) data feed has been incorporated to supply observations or real-

time numerical weather prediction (NWP) forecasts (out to 180 hours) for use in

profile generation [15].

The primary difference between using MODTRAN and LEEDR for atmospheric

compensation of hyperspectral imaging is that LEEDR allows the user to generate

accurate atmospheric profiles for the times and locations of the measurements rather

than relying on standard atmospheres, or forcing the user to import properly format

radiosonde data, climatology data, or NWP data. The user can define specific atmo-

spheric conditions with more fidelity than MODTRAN can offer. Because radiosonde

and climatology data are not always available, LEEDR gives more flexibility in terms

of atmospheric characterization [27].

The goal of this thesis is to determine if using LEEDR’s atmospheric modeling

tools for atmospheric compensation of LWIR HSI data provides some quantitative

benefit over using standard atmospheres such as MLS. First, LEEDR will be used

to generate NOMADS and ExPERT atmospheric models for each HSI data cube.

MODTRAN will be used to generate transmission, upwelling radiance, and down-

welling radiance spectra to use for atmospheric compensation. Target emissivity will

be extracted using known temperatures rather than using a temperature/emissivity

separation algorithm. The extracted emissivities will be compared to truth spectra

using root-mean-square error and standard deviation of the residual. The NOMADS

11
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and ExPERT atmospheric profiles are expected to result in less error than the stan-

dard atmosphere.
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II. Background

In 1966, a collaboration between the University of Michigan and Purdue University

resulted in the first multispectral sensor. The goal was to produce a sensor that could

measure health and growth of crops in the agricultural industry. The sensor could

capture data from the visible to the LWIR in up to eighteen different spectral bands.

This technology grabbed the attention of other research institutions. By 1968, the

National Aeronautics and Space Administration (NASA) began working on the sensor

known as Landsat, the first space based multispectral imaging platform [21].

Multispectral images are made up of a collection of broadband images, each in a

different spectral band. These images can then be analyzed as a group to differentiate

objects in the scene. Many times, three of the spectral bands are combined into one

image to create a pseudocolor image. This technique allows for easy visual analysis

of the data. Using multiple spectral bands adds a third dimension over standard

imagery by providing spectral information along with spatial information [13]. This

technology was proven useful in 1971 when the Indiana corn crop was attacked by

a fungus. Multispectral imaging was able to detect which fields were infected, what

stage the infection was, and the health of the crop.

Hyperspectral imaging was developed from multispectral imaging, but driven by

the desire for higher spectral resolution [21]. Hyperspectral imaging is defined by

the acquisition of images in hundreds of contiguous spectral bands such that for

each pixel a radiance spectrum can be measured. Because the spectral bands are

contiguous, hyperspectral imaging is able to spatially and spectrally identify materials

in a scene using their respective spectral signature. For imaging scenarios when

material identification rather than discrimination is key, hyperspectral imaging is the

best option.

Hyperspectral imaging was originally developed in the private sector for Earth
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remote sensing, specifically geological mapping [18]. The ability to spectrally identify

minerals and plants in the visible to near IR spectrum made this field of science

much easier by being able to characterize large areas in a short period of time. As

the technology grew, more scientific communities started adopting HSI and it is now

a staple in many remote sensing fields such as agriculture, vegetation science, urban

mapping, and land use monitoring to name a few. The technology has made its

way into government agencies as well with law enforcement and military applications

being realized.

There are four main spectral regions that are used in HSI. The visible to near

IR (VNIR, 0.35-1.0µm) , short wave infrared (SWIR, 1.0-2.5µm), mid wave infrared

(MWIR, 3-5µm), and LWIR (7-14µm). VNIR and SWIR measure reflected solar

radiance, LWIR measures thermal radiance, and MWIR measures a combination of

the two [13]. HSI is most commonly used in the VNIR and SWIR due to maturity and

lower cost, but there has recently been a growing interest in the LWIR spectrum [28].

Measuring thermal radiation rather than reflected sunlight as in the VNIR and SWIR

gives advantages as well as disadvantages. Objects emit thermal radiation at all times

of day allowing for collection of LWIR data during the day or night. Unfortunately,

because LWIR HSI systems detect thermal energy, they generally must be cooled to

cryogenic temperatures to reduce noise from instrument self emission. LWIR systems

are generally higher cost and less mature than VNIR and SWIR systems [13], [28],

[27].

The technology of hyperspectral imaging closely follows the development of com-

puters, data storage, and electronics technology. Collecting imagery with fine enough

spectral resolution requires fast computing and large data storage capabilities. Some

of the first hyperspectral sensors used a focal plane array that was only thirty-two by

thirty-two detector elements. As microfabrication techniques improved, focal planes
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gained more detector elements and computing speed became faster. This, combined

with better electronic data storage, allowed HSI to grow to where it is today [18].

Most dispersive HSI sensors are built in a very similar way. The incident radiation

passes through a slit, which is imaged onto a dispersive optical element such as a prism

or diffraction grating. The dispersed radiation is then imaged onto a focal plane array.

The focal plane array is placed such that each column of pixels records a single slit

image. The number of pixel columns on the focal plane determines the number of

spectral bands recorded in each image. Each image taken with the sensor includes

one spatial dimension along the length of the slit and one spectral dimension across

many different wavebands [13].

In order to include the second spatial dimension the slit must be scanned across

the scene. For ground-based sensors this can be done by scanning a mirror while

taking frames, or scanning the sensor itself. For airborne sensors, more options exist.

Pushbroom scanning involves aiming the sensor’s slit length to be oriented perpen-

dicular to the aircraft’s direction of flight. The frame rate of the sensor is determined

by the speed of the aircraft. Whiskbroom scanning orients the slit parallel to the

direction of movement and uses a mirror and gimble to scan perpendicular to the di-

rection of the aircraft’s flight. This method of measurement allows for more freedom

in choosing camera operating parameters, but is more difficult to implement [13], [25].

The data collected is represented as a three dimensional array, called a data cube.

Because data cubes contain spatial and spectral information, special techniques have

been developed for analyzing them depending on the application. Generally, each

spatial pixel is treated as a single element while its corresponding spectral data is the

vector of information being considered [13].

Before any analysis can be done, the data must be calibrated. There are two

forms of calibration for HSI systems, spectral and radiometric. In order to know the
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radiance values rather than digital counts collected by the instrument, an absolute

radiometric calibration is performed. This is done using a calibrated light source for

the VNIR/SWIR spectral bands or a blackbody in the LWIR. At least two measure-

ments are required for calibration, one being a light source dimmer that the scene

being measured or a blackbody colder than the scene and a light source brighter or

hotter than the scene. Detectors are designed to behave linearly within their region of

operation, so a line is fit to the digital counts measured from the calibration sources.

Since the radiance values of the calibration sources are known, the digital counts mea-

sured in the scene can be converted to radiance values in post-processing. Spectral

calibration uses gas discharge lamps to quantify the spectral alignment of the instru-

ment. The known emission lines of the various gas lamps used are measured and can

reveal detector misalignments, called “keystone”, or aberrations that cause the lines

to be warped, called “smile.” This information shows the spectral bandwidth of each

detector on the focal plane so that the post processing and analysis can be done [13],

[25].

In order to make sense of HSI data, it is important to know the radiative transfer

equations that model how energy makes its way to the sensor. Radiance at the sensor

can be represented using a simplified diffuse facet model such that

Lp(λ) = τa(λ)[1− ρa(λ)]B(λ, T ) +
τa(λ)ρa(λ)

π
[Es(λ) + Ed(λ)] + La(λ). (1)

Lp is defined as pupil plane radiance, τa is transmission of the atmosphere along the

sensor-to-ground path, ρa is reflectance of the material, and B(λ, T ) is the blackbody

radiance function where T is the material surface temperature. Es(λ) represents the

direct solar irradiance, while Ed(λ) is the integrated downwelling radiance from indi-

rect sources such as emission and scattering from the atmosphere and nearby objects

[13]. Finally, La(λ) is the radiance emitted from and scattered off of the atmosphere
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between the sensor and the scene. This equation makes the assumption that the

scene is lambertian and is therefore independent of viewing angle. If a directionally

dependent answer was desired, Eq. (1) can be expressed using a bidirectional re-

flectance distribution function (BRDF) which models the surface of a material and

its directional reflectance properties. The lambertian assumption is used in practice

because BRDFs are difficult to model and computationally expensive.

In the VNIR and SWIR spectral bands reflected radiance dominates emission, so

for these bands Eq. (1) can be simplified to

Lp(λ) =
τa(λ)ρa(λ)

π
[Es(λ) + Ed(λ)] + La(λ). (2)

In the LWIR, the direct solar irradinace component can be ignored, reducing Eq. (1)

to

Lp(λ) = τa(λ)[1− ρa(λ)]B(λ, T ) +
τa(λ)ρa(λ)

π
Ed(λ) + La(λ) (3)

where the value of 1 − ρa(λ) is assumed to be equal to emissivity, which assumes

that all materials are optically opaque. These models are made for solid objects, but

others exist for gaseous effluents and objects under water. Equations (2) and (3) show

how all parts of the atmosphere can greatly affect a signal being measured with an

HSI system [13]. In order to remove those affects, atmospheric compensation must

be performed on the data.

There are two main categories of atmospheric compensation methods applied to

HSI data, in-scene and model-based. In-scene methods generally use known mate-

rial with a known reflectance in the scene to estimate the atmospheric transmission,

upwelling radiance, and downwelling radiance (TUD) terms. A simple in-scene atmo-

spheric compensation known as the empirical line method is performed using a linear

relationship between measured radiance and known spectra [13], [12]. Gain and offset
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coefficients of the atmosphere can be calculated at each spectral band. Solving for

reflectance spectra, the gain and offset are removed from the HSI datacube. The

transmission and irradiance terms in Eq. (2) are simplified to a single coefficient as

Lp(λ) = a(λ)ρ(λ) + b(λ), (4)

where a(λ) is the atmospheric gain and b(λ) is the offset [13]. With at least two surface

reflectance spectra measured being known, a linear regression can be performed to

calculate the gain and offset.

Two radiance measurements represented as L1(λ) and L2(λ) along their two known

reflectance spectra, ρ1(λ) and ρ2(λ) are used to estimate the gain and offset created

by the atmosphere. A slope-intercept relationship is used such that

â(λ) =
L2(λ)− L1(λ)

ρ2(λ)− ρ1(λ)
(5)

and

b̂(λ) =
L1(λ)ρ2(λ)− L2(λ)ρ1(λ)

ρ2(λ)− ρ1(λ)
. (6)

Once the gain and offset are estimated, the reflectance spectra of the datacube can

be calculated for each pixel as

ρ̂(λ) =
Lp(λ)− b̂(λ)

â(λ)
. (7)

This method works well in the visible spectrum, but for LWIR data the target temper-

ature and emissivity spectra must be known rather than just the reflectance spectra

[13]. There have been a few algorithms based on the ELM created for the MWIR/L-

WIR spectrum such as the emissive empirical line method (EELM) [12] and au-

tonomous atmospheric compensation (AAC) [19].
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Model-based atmospheric compensation methods use some radiative transfer model

such as MODTRAN or LEEDR to estimate the atmospheric transmission, path radi-

ance, downwelling radiance, and solar irradiance present in a hyperspectral measure-

ment. These estimates are made iteratively or as a basis set to find the atmospheric

parameters that fit the data best in some sense [13], [26]. All radiative transfer mod-

els require information about the atmosphere to make an accurate estimate of the

modeled radiance, but the amount of variables involved in defining the atmosphere

makes for an impractical problem. In the LWIR, many atmospheric parameters have

similar impacts on the radiance and transmission values and can therefore be set to

some ”default” value that makes sense in each particular situation. The parameters

that are varied include temperature, water content, and ozone. Minimizing the num-

ber of variables to iterate over increases the tractability of model-based atmospheric

compensation methods [13].

Fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) is a

model based atmospheric compensation method that includes more complicated at-

mospheric behavior, such as multiple scattering and clouds [22]. It was originally

developed for the VNIR and SWIR spectral bands but was later adapted to the

MWIR and LWIR in an algorithm called FLAASH-IR. This atmospheric compensa-

tion algorithm begins by modeling the pupil plane spectral radiance as

Lp(λ) = τa(λ)ε(λ)B(λ, T ) + [1− ε(λ)]Ld(λ) + La(λ). (8)

This equation is another form of the simplified diffuse facet model in Eq. (1), where

the irradiance terms were converted to a single term that represents the total down-

welling radiance at the pupil plane such that

Ld(λ) =
τ(λ)[Es(λ) + Ed(λ)]

π
(9)
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and the reflectance terms ρ(λ) are represented as [1 − ε(λ)] where ε(λ) is spectral

emissivity [4]. This relationship between reflectance and emissivity assumes that there

is no transmission and that absorption and emission are equal. Multiple scattering

and clouds are included in this downwelling radiance term by modeling Es(λ) with

more blackbody like structure for clouds and modeling Ed(λ) to include surrounding

object emission such as trees or buildings.

The FLAASH-IR algorithm starts by making arrays of scaling constants for at-

mospheric water content, temperature near the ground, and ozone. These scaling

constants are used to adjust their respective atmospheric constituents in a standard

MODTRAN atmosphere. The algorithm then uses all combinations of the scaling con-

stants to create a library of possible atmospheres using MODTRAN. Each possible

atmosphere contains a path transmission, path radiance, and downwelling radiance.

Then, polynomial fitting is used to interpolate additional atmospheres between the

models for finer sampling.

A set of possible emissivity spectra are estimated for each modeled atmosphere

such that

ε̂(λ) =
Lp(λ)− L̂d(λ)− L̂a(λ)

B(λ, T̂ )τ̂(λ)− L̂d(λ)
, (10)

where Lp(λ) represents the measured radiance and the estimated quantities are de-

noted with a hat. Each set of emissivities is estimated using a single atmosphere

and a range of possible surface temperatures in the blackbody function B(λ, T ) [4].

The smooth-emissivity criterion states that the most likely solution is the emissivity

spectrum with the least amount of fine spectral structure. In the LWIR, most solids

have broad spectral changes while atmospheric constituents tend to have fine struc-

ture. Therefore, more fine structure is correlated to less atmosphere removed from

the spectra [11].

A metric for the amount of fine spectral structure is calculated using a mean
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squared residual between the measured spectrum and a modeled spectrum created

using Eq. 8 and a smoothed emissivity spectrum. The emissivity is smoothed using

a running average over a specified number of adjacent spectral channels. The mean

squared residual is represented as

σ2 = [Lp − L̂p(〈ε〉)]2, (11)

where

L̂p(〈ε〉) = τ̂a(λ)〈ε〉B(λ, T̂ ) + [1− 〈ε〉]L̂d(λ) + L̂a(λ). (12)

The quantity σ2 is the mean squared residual and 〈ε〉 is the smoothed emissivity

spectra such that

〈εk〉 =
1

N

1∑
n=−1

εk+n (13)

for a three band average [4], [11]. The FLAASH-IR algorithm uses a downhill sim-

plex method to minimize the mean squared residual using a one dimensional search

for surface temperature within a three dimensional search for atmospheric water,

temperature near the ground, and ozone scaling constants.

This mean squared residual minimization is done on a number of different pixels

(usually 10-20) in the hyperspectral image over a diverse range of brightness and

emissivity spectra to ensure an accurate atmospheric retrieval for all pixels. The

FLAASH-IR algorithm assumes that the atmosphere across the image is constant.

Once the atmospheric retrieval is complete, the atmosphere is removed from all pix-

els in the image using Eq.(10) and each pixel undergoes the mean squared residual

minimization to separate the temperature and emissivity out of the target leaving

radiance term [4], [10].

In order to model the TUD terms, MODTRAN starts with one of its standard

atmospheres. The standard atmospheres were created in 1962 by the Environmental
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Science Services Administration (ESSA), the National Aeronautics and Space Ad-

ministration (NASA), and the United States Air Force (USAF) for use in scientific

calculations and studies of the effect of the atmosphere on aerospace vehicle design.

The standard atmospheres were later updated in 1976 to provide more accurate pro-

files above 50km in altitude. These standard atmospheres are matrices whose columns

contain altitude, temperature, pressure, and density and mixing ratios for H2O, O3,

CH4, and N2O [1], [2], [3].

MODTRAN models the atmosphere as a set of spherical layers around the Earth.

Each layer Zj has two boundaries defined at altitudes z1 and z2. Each layer has a

set of atmospheric parameters such as temperature, pressure, and molecular species

densities that MODTRAN uses to calculate the TUD parameters. These atmospheric

parameters are stored in standard atmosphere profiles, mid-latitude summer and

tropical for instance, or can be provided by the user as a custom atmosphere profile.

The profiles contain all necessary information at each layer altitude [14], [8].

MODTRAN calculates the TUD parameters in two different ways, line-by-line or

statistical band model. The line-by-line method calculates the absorption by each

molecular transition listed in the HITRAN database at every layer. This allows the

spectra to be sampled very fine, but is computationally expensive and can take a long

time to complete. The band model uses approximations to estimate the absorption in

each spectral band. This method uses coarser spectral sampling, but is much faster

than line-by-line and the sampling is adequate for HSI atmospheric compensation.

The statistical band model was used in this research [14], [23].

In the statistical band model, MODTRAN calculates the transmittance through

the atmosphere by first looking at molecular species transmittance for a single atmo-

spheric layer. Transmission is split into three components, line center, tail, continuum.

A pseudo line strength distribution for a homogeneous path is defined by ns identical
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strong lines of strength Ss with transition frequencies randomly distributed within

each spectral bin and nw identical weak lines with corresponding strength Sw. The

combined transmittance from the collection of n randomSly distributed identical lines

is equal to the average spectral band transmittance of a single line, tsl, raised to the

nth power such that

〈ttotal〉 = tnsl. (14)

This is applied to the modeled strong and weak lines as

〈ttotal〉 = tns
sl × t

nw
sl . (15)

The transmittance of a single line can be calculated using Beer’s law as

tsl(Su, γc, γd; ∆ν,D) ≡ 1

∆ν

∫ D+∆ν/2

D−∆ν/2

exp[−Sufν(γc, γd)]dν, (16)

using line strength S, path column density u, collision (Lorentz) half width γc, Doppler

half width γd, spectral bin width ∆ν, and the offset of the transition frequency from

bin center D [14]. The function fν(γl, γd) is the Voigt profile defined by the collision

and Doppler half widths such that

fν(γc, γd) =
γc
π3/2

∫ ∞
−∞

exp(−x2)

γ2
c + (ν − γdx)2

dx. (17)

The integral of a Voigt profile does not have an analytical form, so the single line

transmittance function in Eq. (16) is expanded into an expression in terms of modified

Bessel functions. By modeling the line distribution as identical strong and identical

weak lines the Voight profile only needs to be computed twice, reducing computation

time [14], [8].

Next, MODTRAN defines the line center displacement D from bin center. Mod-
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eling the line to be in the center of the bin creates a bias towards more absorption.

An average single-line spectral band transmittance is desired. Correctly spaced lines

have a spectral transmittance equal to the mean transmittance of a transition whose

center is randomly distributed in the spectral bin. Determining line center location

is difficult for a Voigt molecular transition. For pure Lorentzian conditions, γd = 0

cm−1 in the weak line limit, u is small and exp(−Sufnu) ≈ 1 − Sufν . The exact

analytic expression for the offset from bin center D = D∆ν(rc) can be derived as a

function of the ratio of the Lorentz half-width to the bin width, where rc = γc/∆ν

such that

(
D∆ν(rc)

∆ν

)2

=
1

4
− (1 + r2

c )
1− rc tan

[
rc ln

(
1 + 1

r2c

)]
2 +

(
1−r2c
rc

)
tan
[
rc ln

(
1 + 1

r2c

)] (18)

[14], [23].

Next the line tails are modeled. Line tails outside the current bin but less than 25

cm−1 from the bin center are modeled. MODTRAN models the line tail transmittance

in a spectral bin accurately using Pedé approximations, which are ratios of quadratic

polynomials. They can do this because the line tails vary smoothly with at most a

single minimum in a bin. There are five Padé parameters that are determined from

the HITRAN database. Because the line fitting is relatively simple, the line tails

are sampled coarsely and the result is interpolated to reduce computation time. The

resulting line tail model is calculated to be within 0.0001 of the true transmittance

[14].

Continua transmittance is different from the line center and tails in that only

H2O and CO2 are modeled. All other molecular absorptions are insignificant when

the line center is further than 25 cm−1 from the current spectral bin. The temperature

dependent spectral absorption cross-section is calculated for H2O by partitioning it
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into a foreign and a temperature-dependent self-broadening component. The two

parameters are calculated from 0 to 10,000 cm−1 with 5 cm−1 spacing and then used

to calculate the total absorption cross section.The CO2 continuum absorption cross

section is easier to calculate because CO2 has a zero dipole moment, so partitioning

into two broadening components is not necessary. The CO2 absorption cross section

is also calculated from 0 to 10,000 cm−1 but with 10 cm−1 spacing [14], [8].

To calculate upwelling and downwelling radiance terms, MODTRAN defines the

monochromatic radiant intensity I0(Ω0; ν) in integral form as

I0(Ω0; ν) = e−τ`(ν)I`(Ω`; ν) +

∫ τ`(ν)

0

e−τ`′ (ν)J`′(Ω`′ ; ν)dτ`′(ν), (19)

where I0(Ω0; ν) is radiant intensity, ν is spectral frequency, and Ω0 is sensor view

direction. The subscript ` denotes path length. Equation 19 states that the observed

spectral radiant intensity at the sensor is the sum of two terms. The first is the spec-

tral radiant intensity directed toward a sensor along path length ` and attenuated by

atmospheric transmittance along that same path. The second term is the path radi-

ance, equal to the LOS integral over the source radiation J`′(Ω`′ ; ν) directed toward

the sensor and attenuated by the transmittance.

The band model computes radiative transfer quantities integrated over narrow

spectral bins. The radiant intensity measured at a sensor, 〈I0(Ω)〉, is defined by

〈I0(Ω)〉 ≡ 1

∆ν

∫
∆ν

I0(Ω; ν)dν, (20)

where ∆ν is the spectral bin width. The upwelling and downwelling spectra are

calculated using these two equations and the computed atmospheric transmittance

[14].

As previously noted, Laser environmental effects definition and reference (LEEDR)
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is a tool created by the Air Force Institute of Technology. LEEDR and MODTRAN

operate in a similar fashion, but LEEDR includes a tool for generating realistic at-

mospheric profiles rather than relying on standard atmospheric profiles. The ability

to model atmospheric profiles based on numerical weather prediction (NWP) data or

correlated probabilistic climatology rather than starting with a standard atmosphere

as in MODTRAN could reduce computation times and provide the ability to calculate

an atmosphere that is close to the true atmosphere at the time of data collection.

There are two ways that LEEDR models atmospheric profiles, the first is by using

the Extreme and Percentile Environmental Reference Tables (ExPERT) database and

the second is using the National Operational Model Archive and Distribution System

(NOMADS). The ExPERT database contains data from 573 land sites around the

world with surface data of temperatures, pressures, relative humidities, and more.

Probabilistic climatological atmospheric profiles are developed using the ExPERT

data coupled with regional upper air climatologies. Atmospheric profiles for all lo-

cations can be produced using NWP data in the NOMADS database. The NO-

MADS database, managed by the National Oceanic and Atmospheric Administration

(NOAA), is a database where communities can upload weather data to a secure

Internet server for public distribution. Data from various NWP models is available

including Climate Forecast System, North American Regional Reanalysis, Global En-

semble Forecast System, Navy Operational Global Atmospheric Prediction System,

CM2 Global Coupled Climate Models, and many more. It contains NWP data and

latitude/longitude interpolation for an accurate representation of the atmosphere at

almost any location across the globe [15], [16], [17], [24].
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III. Experiment

The goal of this research is to determine if using LEEDR’s atmospheric modeling

capabilities provides a significant advantage to using standard atmospheric profiles

in model-based atmospheric compensation of HSI data. The data used for this work

were collected using the Spatially Enhanced Broadband Array Spectrograph (SE-

BASS) LWIR sensor on an airborne platform at 9,000, 6,000, and 3,000 feet above
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Figure 1. 1a and 1b plot the temperature and water content respectively of the ra-
diosonde measurements used in the atmospheric compensation of each data cube to
show the diversity in weather conditions between the data sets. The ground temper-
ature varies from 290.9K to 304K and the surface dew point varies from 256.5K to
270.3K.

ground level. The data used was collected between August 11 and August 20 of 2014
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at a location considered to be within the mid-latitude region. Targets of varying size,

emissivity, tilt geometry, surface roughness, and surface temperature were collected,

but for the purpose of this research only four targets were examined: low emissivity

paint, medium emissivity paint, high emissivity black paint, and high emissivity white

paint. Each target had thermocouples attached which logged temperature measure-

ments once per minute. A mobile weather station was used to log surface weather

conditions once every two minutes. Ground truth emissivity signatures were were

obtained from field measurements using a Designs and Prototypes (D&P) Fourier

transform infrared spectrometer.

Seven different data cubes were used for this research. Figure 1 plots the tem-

perature and water content of the radiosonde measurements used in the atmospheric

compensation of each data cube to show the diversity in weather conditions between

the data sets. The ground temperature varies from 290.9K to 304K and the sur-

face dew point varies from 256.5K to 270.3K. The diversity in dew point continues

throughout the atmosphere until 19km in altitude where all of the profiles converge.

The atmospheric compensation algorithm used is similar to the FLAASH-IR al-

gorithm in that it iterates over a set of surface temperature, water concentration,

and ozone vectors using a Nelder-Mead simplex to minimize error until it finds the

best possible atmospheric compensation. A group of diverse pixels are automatically

selected based on large spectral variation. A library of five hundred emissivity spec-

tra are forward modeled to pupil plane radiance using the TUD spectra. The diverse

pixels are identified using this spectral library and an RMS spectral error is calculated

between the modeled spectra and diverse pixel spectra. The RMS error is the metric

minimized using the Nelder-Mead simplex. Gradient based minimization techniques

are rarely used in atmospheric compensation algorithms because they are prone to

finding local minima rather than the global minimum.
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There is never a single solution to an atmospheric compensation problem. The

exact atmosphere is not required to get accurate atmospheric compensation results.

There are many constituents that make up different atmospheric conditions, and

different combinations of these can produce very similar results when boiled down

to a simple transmission, upwelling radiance, and downwelling radiance. Therefore,

non-gradient techniques such as Nelder-Mead are more consistent in their results due

to their ability to look past local minima.

The atmospheres are put into MODTRAN5 to generate the TUD spectra for at-

mospheric compensation. MODTRAN was used to perform the radiative transfer

calculation in all cases because the purpose of this research is to determine the ad-

vantage of LEEDR’s modeled atmospheres, and not to evaluate radiative transfer

codes or temperature-emissivity separation algorithms. The TUD spectra were then

used with the known target temperature to extract emissivity spectra to provide

consistency in temperature/emissivity separation.

The emissivity spectra were extracted using the Lambertian reflectance model

from Eq. 8. The algorithm outputs an initial set of TUD spectra, initial extracted

emissivity, TUD spectra after iteration, and a final extracted emissivity. This algo-

rithm was set to do 50 iterations on the atmospheric constraints before stopping.

There were four basic atmosphere profiles used to perform atmospheric compen-

sation on each data cube: NOMADS NWP, ExPERT, Mid-Latitude Summer (MLS),

and Radiosonde data. The NOMADS and ExPERT atmospheres were selected based

on date, time, and location the data cube was collected. MLS was used as the

standard atmosphere because the data were collected in a mid-latitude region. Ra-

diosonde balloons were launched at regular intervals throughout each day of the data

collection and the measurement closest in time to each data cube collection was used.

The radiosonde profiles are often considered to be the best initial solution to the
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atmospheric compensation because it is a measure of the atmosphere at or near the

time of the collection. For experimental data collections it is considered to be the

true atmosphere, but in operational scenarios it is often not possible to obtain local

radiosonde measurements.

A common practice in atmospheric compensation is to correct the atmosphere

profile to a known ground temperature and water content. This scenario was also

tested by using the known surface temperature and relative humidity measured by

the mobile weather station at the time the data were collected. Young et al present

a method for adjusting the temperature profile such that

Tc(z) =


T0 − 6.49z; z ≤ (T0 − 216.7)/6.49

216.7; z > (T0 − 216.7)/6.49

(21)

where Tc(z) is the corrected atmospheric temperature vs altitude, T0 is the temper-

ature measured at the ground, and z is altitude. This parametric equation gives all

temperature profiles a lapse rate of -6.49 until it reaches 216.7K where it stays for all

higher altitudes.

This method presents two problems. The temperature fluctuates at higher alti-

tudes after it reaches 216.7K, and the temperature profiles used in this research don’t

necessarily have the same lapse rate. The lapse rate used in Eq. 21 is specifically

for the 1976 US standard atmosphere, but the change in temperature with altitude

for the NOMADS, ExPERT, or radiosonde atmospheres could be different. A new
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parametric equation was devised to calculate the adjusted temperature profile as

Tc(z) =


(T0 − T̃0) + T̃ (z); z ≤ 8

T0 + `z; 8 < z ≤ (T0 − 216.7)/`

T̃ (z); z > (T0 − 216.7)/`

(22)

using an estimated lapse rate ` calculated from the original temperature profile T̃(z).

The first 8km of atmospheric temperature is shifted based on the difference between

the measured ground temperature T0 and the profile ground temperature T̃0. The

lapse rate ` of the temperature profile is estimated and used until the temperature

reaches 216.7K. The original temperature profile is then used for all altitudes above

the first 216.7K, preserving the upper atmosphere temperatures and the original lapse

rate.

The water concentration in parts per million by volume (PPMV) was adjusted as

CH2O(z) =


CH2O(z)[1 + ( C0

CH2O
(zg)
− 1)(1− e−0.8(16−z))6], z ≤ 16

CH2O(z), z > 16

(23)

where C0 is the measured surface water concentration and CH2O(zg) is the profile

water concentration at the ground. This adjusts the water concentration in a way

that is exponentially dependent on altitude for a smooth transition between adjusted

and original profile values [29].

The extracted emissivity was compared to ground truth measurements using two

error metrics, RMS error and STD of the residual. RMS error is an appropriate metric

to use in judging the magnitude of the emissivity differences, and STD of the residual

allows for a measure of the variation between the known and extracted spectra while

omitting the mean. In target detection, some variation of correlation rather than
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RMS error is used because targets orientation or temperature has a large impact on

the magnitude of the retrieved emissivity. A correlation metric was not used because

all target detection algorithms use a different correlation metric, and choosing one

could skew the results. Also, the STD of the residual is a simple way to show spectral

deviation caused by the atmospheric profiles. The RMS error was calculated as

RMS Error =

√
[ε̂− ε]2, (24)

where ε̂ is the extracted emissivity spectra and ε is ground truth emissivity spectra.

The STD is then calculated as

εd = ε̂− ε

STD =

√
[εd − εd]2.

(25)
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IV. Results

All figures in this section that reference a single data cube are a result of the

data cube taken 8/12/2014 at 15:12 UTC at an altitude of 9000ft, which was found

to be representative of the rest of the results. For data that spans multiple data

cubes, the cubes are differentiated by using the date and time the cube was collected.

All displayed times are in UTC, but the local time at the collection site was six

hours behind UTC. The data cube labeled 8/19/2014, 03:43 UTC was actually taken

8/18/2014, 21:43 local time. As for altitude, on the 11th, 12th, and 13th the sensor

was flown at 9000ft, on the 18th the sensor was flown at 6000ft, and on the 19th and

20th it was flown at 3000ft.

Figures 2a and 2b plot the initial temperature and dew point used to perform

atmospheric compensation on the data cube taken on 8/12/2014 at 15:12 and at

9000ft. The temperature and water content in the first 3km are the most influential

in terms of atmospheric absorption and emission, and these atmospheric profiles show

a large amount of variation. The surface temperatures range from 283.7K to 298.2K

and the dew point varies from 259.6K to 268.1K.

The variation in temperature and water content close to the surface causes signif-

icant differences in the transmission, upwelling radiance, and downwelling radiance

as shown in Figure 3. The temperatures and surface water content for the NOMADS

and ExPERT atmospheres are less than the MLS values, which corresponds to higher

transmission and lower atmosphere emitted radiance. Figures 4 and 5 show the results

of these differences. Low estimated transmission with high estimated down/upwelling

radiance terms lead to extracted emissivity that has a lower mean than the truth.

It can be seen that the NOMADS and ExPERT atmospheres provide more accurate

atmospheric compensation results compared to MLS and even the radiosonde when

looking at the two high emissivity targets.
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(b) Dew Point

Figure 2. Figures 2a and 2b plot the four modeled temperature and dew point profiles
for the data cube taken on 8/12/2014 at 15:12 UTC. The temperature and water
content in the first 3km are the most influential in terms of atmospheric absorption
and emission, and these atmospheric profiles show a large amount of variation. The
surface temperatures range from 283.7K to 298.2K and the dew point varies from
259.6K to 268.1K.

Figure 6 shows a more quantitative difference between the extracted emissivity

spectra. Figure 6a shows the RMS error of the extracted spectra for the low emissivity

target, and Figure 6b shows the STD of the residual. These errors are the result of

the first guess atmospheric profiles. The trend that the NOMADS and ExPERT

atmospheres result in less atmospheric compensation error is consistent across all

data cubes. There are two data cubes that visually stand out as having higher error

values that the rest. Looking at the radiosonde data collected on 8/13/2014, there

was a larger total atmospheric water content than on any other day. Also, there was

sparse cloud cover throughout the day. Although data cubes were excluded from this
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(b) Upwelling Radiance
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(c) Downwelling Radiance

Figure 3. Figures 3a, 3b, and 3c plot the initial guess for the transmission, upwelling,
and downwelling radiance respectively. It should be noted that the NOMADS and
ExPERT transmissions are higher and the upwelling and downwelling radiances are
lower. This is caused by the lower temperature and water content modeled in the
NOMADS and ExPERT atmospheric profiles.
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study for having cumulus clouds anywhere in the sky or cirrus clouds anywhere other

than the horizon regions, it is possible that some horizon cirrus clouds effected the

data and caused an increase in error. The data collected on 8/19/2014 was collected

at night, and the cloud cover in unknown. It is possible that sparse cloud cover

effected the emissivity recovery error.
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(a) Low Emissivity Target
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(b) Medium Emissivity Target

Figure 4. This figure shows the extracted emissivity of the low and medium emissivity
target using the first guess atmospheres. It can be seen that the emissivity extracted
using the MLS atmosphere does not match the spectral shape of the low emissivity
target’s truth and has the largest amplitude error with the medium emissivity target.
Of the spectra extracted using NOMADS, ExPERT and radiosonde data, NOMADS
is most accurate for the low emissivity target and ExPERT is most accurate for the
medium emissivity target.
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(a) High Emissivity White Target
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(b) High Emissivity Black Target

Figure 5. Figure showing the extracted emissivity of the two high emissivity targets
using the first guess atmospheres. These spectra are much harder to correct for because
of the lack of spectral features, but it is obvious that the NOMADS and ExPERT
atmospheres provide a more accurate atmospheric compensation than MLS or the
radiosonde in these cases.

Table 1 displays the RMS error calculated for all extracted emissivity over all data

cubes, and Table 2 shows the STD of the residual. It is easily seen that the NOMADS

and ExPERT atmospheres provide an advantage over MLS for this data set. Out of

all the data, MLS had less RMS error than NOMADS only once, and did not have

less STD at all. The average RMS error over all targets and data cubes is listed at the

bottom of Table 1 along with the uncertainty of that average. The uncertainty was
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Figure 6. Figure showing the RMS error and STD of the residual for the low emissivity
target for all data cubes. The NOMADS atmosphere resulted in less error and STD of
the residual than MLS in all cases and less error than the radiosonde data in all cases.
ExPERT returned less RMS error than MLS in all cases except for one, and less STD
of the residual than MLS in all cases.

found by calculating the STD of the averaged values and dividing that by the square

root of the number of samples. The mean RMS errors of NOMADS and ExPERT are

below that of MLS and are outside the uncertainty range. It is also worth noting that

the NOMADS RMS error and STD are less than the radiosonde error and outside

the uncertainty ranges.

The radiosonde data is generally treated as being the truth atmosphere, but there

are two reasons that the NOMADS and ExPERT atmospheres resulted in less RMS

error and less STD of the residual. The first reason is time difference between the

radiosonde balloon launch and the data collection. Figures 7a and 7b plot the RMS
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(b) STD of the Residual

Figure 7. These plot the RMS error and STD of the residual of the radiosonde at-
mospheres against the time difference between the radiosonde launch and the hyper-
spectral data collection. There is an obvious trend of error increase after the time
difference is greater than about two hours. The large RMS error at about 70 minutes
time difference in Figure 7a is the night time collection (refer to Figure 6).
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(a) Distance up to 20km in altitude
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(b) Distance up to 5km in altitude

Figure 8. These plot the distance in kilometers of the radiosonde balloon from the
vertical profile at the target latitude and longitude. Figure 8a shows the distance at
all altitudes collected by the radiosonde balloon and Figure 8b shows the distances
up to five kilometers to provide a better picture for the most important part of the
atmosphere. Over half of the balloons are at least two kilometers away from the target
latitude/longitude at only three kilometers in altitude.
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error and STD of the residual of the radiosonde atmospheres against the time differ-

ence between the radiosonde launch and the hyperspectral data collection. There is

an obvious trend of error increase after the time difference is greater than about two

hours. The large RMS error at about 70 minutes time difference in Figure 7a is the

night time collection (refer to Figure 6).

The second reason is that the radiosonde balloon drifts away from the vertical

above the target as it rises. Figure 8 plots the distance in kilometers of the radiosonde

balloon from the vertical profile at the target latitude and longitude. Figure 8a shows

the distance at all altitudes collected by the radiosonde balloon and Figure 8b shows

the distances up to five kilometers to provide a better picture for the most important

part of the atmosphere. Over half of the balloons are at least two kilometers away from

the target latitude/longitude at only three kilometers in altitude. The atmosphere

can change dramatically in two horizontal kilometers, and that would increase errors

in the retrieved emissivity.

Comparing the iterated TUD spectra in Figure 9 to the first guess spectra in

Figure 3 immediately shows a tighter grouping of the TUD spectra after iteration. It

is expected that because the TUD spectra are very similar the extracted emissivity

will also be close to each other. Figure 10 and Tables 3 and 4 confirm this by showing

that the RMS error and the STD of the residual between the extracted emissivities

using the different atmospheric profiles is statistically insignificant.

It should be noted that the STD of the residual for the first guess NOMADS at-

mosphere and the iterated NOMADS are the same. Many target detection algorithms

use a correlation statistic, so this result suggests that the performance between the

first guess NOMADS and iterated NOMADS atmospheres would be similar. More

study is required to make any conclusions on this topic.

Because all of the extracted emissivities were very similar after iteration, the
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rate at which each atmospheric profile converged to its optimal solution was ana-

lyzed. The Nelder-Mead minimization parameter was recorded at each iteration for

all atmospheres and all data cubes. The results from two data cubes are presented

in Figure 11. Figure 11a shows that the NOMADS atmosphere converges around

twenty iterations and the radiosonde converges around seven. This result was not re-

peated throughout the other data cubes as can be seen in Figure 11b. The data cube

taken on 8/12/2014 at 17:53 was the only instance of significant difference between

atmospheres in the number of iterations it took to converge to an optimal solution.

The Nelder-Mead minimization technique is not suited well for this type of study

because of the way that it searches for the global minimum. The progressive steps in

the Nelder-Mead approach are small, so a different minimization function may lend

itself better to this metric [20]. The data shows a large decrease in error within the

first few iterations as in Figure 11b, so an approach that combines the Nelder-Mead

with a gradient based iteration technique may prove useful. Although this may work

in most cases, there is still risk of finding a local minimum after only a few iterations

with Nelder-Mead for data similar to Figure 11a.

Figure 12 shows how the atmospheric profiles were adjusted for measured ground

temperature and dew point. It can be seen in Figures 12a and 12b that the tem-

perature profiles retain their original lapse rate but the ground temperatures are all

equal. Figures 12c and 12d show that the dew point profiles also retain their general

shape while the dew point at the surface is adjusted. Figure 13 plots the extracted

emissivities using ground weather with and without iterating. Comparing Figure 13a

to Figure 4a shows a degradation in performance caused by adjusting the profiles for

known ground weather.

The reason for the performance degradation is likely to lie in the way that the

atmospheric water content was adjusted. The large mismatch in extracted emissivity
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in the water absorption bands at the edges of the spectra in Figure 13a are indicative

of incorrect water content. MODTRAN takes water profiles as relative humidity but

the adjustment, Equation 23, requires water content in PPMV. In order to adjust the

profiles, the relative humidity was converted to PPMV. There is no existing closed

form solution from this conversion, so an approximation with empirically derived con-

stants was used. MODTRAN can receive water content in PPMV but it produces an

error if the water exceeds 9999 PPMV, a possible scenario at the surface. Therefore,

relative humidity was used to circumvent this error.

Tables 3 and 4 show the mean RMS error and STD of the residual of the extracted

emissivity spectra over all targets and data cubes of the initial atmospheric compen-

sation, iterated, initial using ground weather, and iterated using ground weather.

Using measured ground weather to adjust the temperature and water content had a

negative effect on all atmospheres.
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Table 1. This table displays the RMS error for all data cubes and all targets. It also
presents the mean RMS error over the targets for each data cube and the mean over
all targets and data cubes. The green boxes represent the lowest error out of the
four atmospheres. The NOMADS atmosphere returned the lowest mean RMS error
over all targets and data cubes and had the highest number of green boxes. ExPERT
atmosphere returned the second lowest mean RMS error and had the second most
green boxes.
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Table 2. This table displays the STD of the residual for all data cubes and all targets.
It also presents the mean STD over the targets for each data cube and the mean over
all targets and data cubes. The green boxes represent the lowest STD out of the four
atmospheres. The NOMADS atmosphere resulted in the lowest mean STD over all
data cubes and targets, while the ExPERT atmosphere had the most green boxes. The
differences in mean STD between NOMADS and ExPERT are within the uncertainty,
while the difference between NOMADS and radiosonde is not within uncertainty, and
MLS in not within the uncertainty for any other atmosphere.
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(b) Upwelling Radiance
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(c) Downwelling Radiance

Figure 9. Figures 9a, 9b, and 9c plot the iterated spectra for the transmission, up-
welling, and downwelling radiance respectively. The transmission spectra for all at-
mospheres is fairly consistent, while the radiance spectra are more spread out. The
iteration changes water content at two altitudes in the profiles but cannot change the
total water column, leading to slightly different radiance spectra.
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Figure 10. Figure showing the extracted emissivity of the low emissivity target after
iteration. All of the extracted spectra are close to the truth spectra.
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(a) 8/12/2014 at 17:53

0 10 20 30 40 50

Iteration

6

8

10

12

14

16

N
e
ld

e
r-

M
e
a
d

 M
in

 f
(x

)

NOMADS

ExPERT

Radiosonde

MLS

(b) 8/12/2014 at 20:00

Figure 11. This figure shows the mean RMS error at each iteration number for the di-
verse pixels matched to the forward modeled library spectra. This data was used to try
and determine if any atmosphere converged to an optimal solution with less iterations
than another. Figure 11a shows the NOMADS atmosphere converging around twenty
iterations and the radiosonde converging around seven. This result was not shown in
the other data however, as can be seen in Figure 11b.
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(d) Dew Point, Adjusted

Figure 12. Figure showing the atmospheric profiles after ground weather adjustments.
It can be seen that the adjusted temperature profiles share the same ground temper-
ature but retain their original lapse rate. The dew point plot also retains its original
shape after being adjusted for the measured surface water content.

Table 3. This table displays the mean RMS error of the extracted emissivity spectra
over all targets and data cubes of the initial atmospheric compensation, iterated, ini-
tial using ground weather, and iterated using ground weather. Iteration brings the
error for all of the atmospheres together so that the difference in errors is statistically
insignificant. Using measured ground weather to adjust the temperature and water
content had a negative effect on all atmospheres.
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(a) Low Emissivity Target With Ground Adjustments
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(b) Low Emissivity Target Iterated and With Ground Adjustments

Figure 13. Figure showing the extracted emissivity of the low emissivity target before
and after iteration and using ground measurements. Adjusting the atmospheric profiles
with known ground weather hurt the performance of all atmospheric profiles. It is
suspected that there was an error in atmospheric water content unit conversions using
empirical formulas. The drop in emissivity at the edges of the band in Figure 13a
indicates a large error in the amount of water in the atmosphere.
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Table 4. This table displays the mean STD of the residual of the extracted emissiv-
ity spectra over all targets and data cubes of the initial atmospheric compensation,
iterated, initial using ground weather, and iterated using ground weather. Iteration
brings the STD for all of the atmospheres together so that the difference is statistically
insignificant. There is no statistical difference between the STD of the NOMADS first
guess and the NOMADS iterated results. Using measured ground weather to adjust
the temperature and water content had a negative effect on all atmospheres.
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V. Conclusions

The results show that using the NOMADS or ExPERT atmospheric profiles as

a first guess consistently provided improved emissivity estimates over using MLS

for atmospheric compensation. In terms of RMS error and STD of the residual,

NOMADS and ExPERT generally outperformed the results obtained using radiosonde

data and MLS. The radiosonde presented larger RMS error and STD of the residual

because of time differences between the balloon launch and the data collection and

because of latitude and longitude balloon drift during its ascent.

The atmospheres were iterated with a Nelder-Mead minimization fifty times which

resulted in no statistical difference between the four atmospheric profiles. An interest-

ing result shown by the iterations was that the NOMADS first guess and NOMADS

iterated atmospheres resulted in the same STD of the residual. Although there is not

enough information here to make conclusions about target detection performance,

this result should be examined in a target detection scenario in future work.

There was no definitive answer to the question posed about which atmospheric

profile would converge to an optimal solution in the fewest iterations. There was

only one out of seven data sets that suggested that the NOMADS atmosphere would

converge around twenty iterations. The remaining six data sets gave no indication

that any of the atmospheres converged faster than another. It was determined that

the Nelder-Mead minimization was not appropriate for this type of analysis. A com-

bination of Nelder-Mead and gradient based solutions could likely produce a more

interesting result.

Using known ground weather to adjust the temperature and water content of the

atmospheric profiles caused a degradation in performance for all atmospheres. The

reason for this is suspected to lie in how the water content adjustment was performed.

In these simulations, MODTRAN used relative humidity as the input for atmospheric

50



www.manaraa.com

water content. In order to adjust this, the relative humidity was converted to parts-

per-million by volume using an empirically modeled equation. The profile was then

adjusted using Equation 23 and converted back to relative humidity. Any error in

this conversion equation would be doubled, and could result in larger RMS error and

STD. The low emissivity at the edges of the band in the extracted spectra indicate

that there is an error in the amount of atmospheric water. This could be avoided in

future studies by using parts-per-million by volume as the input to MODTRAN.

There are many things that can be done in the future to confirm and widen the

validity range of these results. Performing this study over a larger number of data

cubes and weather conditions would help to confirm these conclusions. Using different

standard model atmospheres and data cubes collected over other geological locations

would widen the validity range of these results.
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